Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome.

نویسندگان

  • Elena D Nosyreva
  • Kimberly M Huber
چکیده

Fragile X syndrome (FXS), a form of human mental retardation, is caused by loss of function mutations in the fragile X mental retardation gene (FMR1). The protein product of FMR1, fragile X mental retardation protein (FMRP) is an RNA-binding protein and may function as a translational suppressor. Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) in hippocampal area CA1 is a form of synaptic plasticity that relies on dendritic protein synthesis. mGluR-LTD is enhanced in the mouse model of FXS, Fmr1 knockout (KO) mice, suggesting that FMRP negatively regulates translation of proteins required for LTD. Here we examine the synaptic and cellular mechanisms of mGluR-LTD in KO mice and find that mGluR-LTD no longer requires new protein synthesis, in contrast to wild-type (WT) mice. We further show that mGluR-LTD in KO and WT mice is associated with decreases in AMPA receptor (AMPAR) surface expression, indicating a similar postsynaptic expression mechanism. However, like LTD, mGluR-induced decreases in AMPAR surface expression in KO mice persist in protein synthesis inhibitors. These results are consistent with recent findings of elevated protein synthesis rates and synaptic protein levels in Fmr1 KO mice and suggest that these elevated levels of synaptic proteins are available to increase the persistence of LTD without de novo protein synthesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome

Fragile X syndrome, the most commonly known genetic cause of autism, is due to loss of the fragile X mental retardation protein, which regulates signal transduction at metabotropic glutamate receptor-5 in the brain. Fragile X mental retardation protein deletion in mice enhances metabotropic glutamate receptor-5-dependent long-term depression in the hippocampus and cerebellum. Here we show that ...

متن کامل

Loss of the fragile X mental retardation protein decouples metabotropic glutamate receptor dependent priming of long-term potentiation from protein synthesis.

Fragile X Syndrome (FXS), the most common inherited form of intellectual disability, is caused by loss of the fragile X mental retardation protein (FMRP). FMRP is a negative regulator of local mRNA translation downstream of group 1 metabotropic glutamate receptor (Gp1 mGluR) activation. In the absence of FMRP there is excessive mGluR-dependent protein synthesis, resulting in exaggerated mGluR-d...

متن کامل

Pharmacological reversal of synaptic plasticity deficits in the mouse model of fragile X syndrome by group II mGluR antagonist or lithium treatment.

Fragile X syndrome is the leading single gene cause of intellectual disabilities. Treatment of a Drosophila model of Fragile X syndrome with metabotropic glutamate receptor (mGluR) antagonists or lithium rescues social and cognitive impairments. A hallmark feature of the Fragile X mouse model is enhanced mGluR-dependent long-term depression (LTD) at Schaffer collateral to CA1 pyramidal synapses...

متن کامل

The mGluR theory of fragile X mental retardation.

Many of the diverse functional consequences of activating group 1 metabotropic glutamate receptors require translation of pre-existing mRNA near synapses. One of these consequences is long-term depression (LTD) of transmission at hippocampal synapses. Loss of fragile X mental retardation protein (FMRP), the defect responsible for fragile X syndrome in humans, increases LTD in mouse hippocampus....

متن کامل

P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation

Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 5  شماره 

صفحات  -

تاریخ انتشار 2006